Features modelling in discrete and continuous hidden markov models for handwritten arabic words recognition

نویسندگان

  • Amine Benzenache
  • Hamid Seridi
  • Herman Akdag
چکیده

The arab writing is originally cursive, difficult to segment and has a great variability. To overcome these problems, we propose two holistic approaches for the recognition of the handwritten arabic words in a limited vocabulary based on the Hidden Markov Models (HMMs): discrete with wk-means and continuous. In the suggested approach, each word of the lexicon is modelled by a discrete or continuous HMM. After a series of pre-processing, the word image is segmented from right to left in succession frames of fixed or variable size in order to generate a sequence vector of statistical and structural parameters which will be submitted to two classifiers to identify the word. To illustrate the efficiency of the proposed systems, significant experiments are carried out on IFN/ENIT benchmark database.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Holistic Farsi handwritten word recognition using gradient features

In this paper we address the issue of recognizing Farsi handwritten words. Two types of gradient features are extracted from a sliding vertical stripe which sweeps across a word image. These are directional and intensity gradient features. The feature vector extracted from each stripe is then coded using the Self Organizing Map (SOM). In this method each word is modeled using the discrete Hidde...

متن کامل

Recognition of Handwritten Arabic (Indian) Numerals using Radon- Fourier-based Features

This paper describes a technique for the recognition of off-line handwritten Arabic (Indian) numerals using Radon-Fourier-based features. A two stage classification scheme is used. The Nearest Mean (NMC), K-Nearest Neighbor (K-NNC), and Hidden Markov Models (HMMC) Classifiers are used in the first stage and a Structural Classifier (SC) is used in the second stage. A database of 44 writers with ...

متن کامل

Semi-Continuous HMMs with Explicit State Duration Applied to Arabic Handwritten Word Recognition

The goal of this paper is to describe an off-line segmentation-free Arabic handwritten words recognition system. This system is based on a semi-continuous 1dimensionnal hidden Markov models (SCHMMs) with explicit state duration of different kinds (Gauss, Poisson and Gamma). First preprocessing is applied to simplify the feature extraction process, then the word image is analyzed from right-to-l...

متن کامل

HMM Based Approach for Handwritten Arabic Word Recognition Using the IFN/ENIT- Database

An offline recognition system for Arabic handwritten words is presented. The recognition system is based on a semi-continuous 1-dimensional HMM. From each binary word image normalization parameters were estimated. First height, length, and baseline skew are normalized, then features are collected using a sliding window approach. This paper presents these methods in more detail. Some parameters ...

متن کامل

Finding words in alphabet soup: Inference on freeform character recognition for historical scripts

This paper develops word recognition methods for historical handwritten cursive and printed documents. It employs a powerful segmentation-free letter detection method based upon joint boosting with histogram-of-gradients features. Efficient inference on an ensemble of hidden Markov models can select the most probable sequence of candidate character detections to recognize complete words in ambi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. Arab J. Inf. Technol.

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2017